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Abstract: In this paper, we analyzed the Semi-Blind approach channel estimation in MIMO-OFDM systems, and in 
particular for LTE downlink. Proposed Semi-Blind approaches lead to significant improvements in the estimation accuracy, 
both from an MSE and BER perspective, compared to the typical pilot based technique. However, exploiting the true discrete 
distribution of the unknown symbols is computationally demanding, therefore we propose the use of two approximations on 
the unknown symbols: the Gaussian and the Constant Modulus assumption to significantly improve the accuracy with respect 
to the pilot based approach, while reducing the computational overhead incurred when using true discrete distribution of the 
unknown symbols. 
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Introduction 
Long Term Evolution (LTE) is a new communication technology based on Orthogonal Frequency Division Multiple Access 
(OFDMA) in the downlink (DL) and Single Carrier Frequency Division Multiple Access (SCFDMA) in the uplink (UL). 
Additionally, LTE downlink transmission model is based on multiple antenna architecture on the transmitter and receiver 
side [1]. Orthogonal Frequency Division Multiplexing (OFDM) has been widely applied in wireless communication systems 
due to its high data rate transmission and its robustness to multipath channel delay [2], [3]. 
Although combination of MIMO with OFDM presents a solution to increase the capacity and the reliability of wireless 
channels, due to time varying channel characteristics of the radio signals it is particularly challenging from a channel 
estimation perspective.  
Channel estimation plays a crucial role in the performance of wireless communication systems, since its knowledge is 
utilized to detect the data symbols [1]. With enhancing the channel estimation performance,  the performance of the entire 
system can also be improved. The channel estimation can be classified into three categories: training-based methods, blind 
methods and semi-blind methods. For pure training-based schemes, a long training is necessary in order to obtain a reliable 
MIMO-OFDM channel estimate which reduces the system bandwidth efficiency considerably. Blind methods which do not 
require any training symbols achieve high system throughput at the expense of high computational complexity. The blind 
channel identification methods can be classified into higher-order statistics based techniques [6]-[8] and second order 
statistics based techniques [9], [10]. 
Joint blind channel estimation and data estimation detection has been proposed based on the iterative least squares with 
projection [11]-[13]. This scheme estimated the channel and data iteratively but the convergence of the scheme depends on 
the initialization of the channel model. Semi-blind schemes on the other hand require less computational complexity than 
blind methods and fewer training symbols than training-based methods, to provide the initial MIMO-OFDM channel 
estimation and exchange the information between the channel estimator and the data detector iteratively so as to provide 
Channel state information [CSI] to the Transmitter, so that it can adjust antenna weights, transmitting power, modulation and 
coding instantaneously.  
This paper is organized as: In section II, we introduce ML semi-blind channel estimation of MIMO-OFDM FIR channels 
from a general perspective, without any prior assumption on the distribution of the transmitted signal. A framework on 
Expectation-Maximization algorithm to solve the maximization problem is presented in Section-III. 
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System Model 
Let’s consider a MIMO-OFDM system with N sub-carriers, T transmitting and R receiving antennas (T×R MIMO). Let Xn(k) 
be the MIMO signal transmitted on sub-carrier n at time k (this is a T × 1 vector). With OFDM, the time domain signal is 
obtained with the Inverse DFT transformation, through the relation 
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Here    k
x p is the pth sample of the kth MIMO-OFDM symbol, where this latter term refers to the ordered set of the 

symbols transmitted on all the sub-carriers, that is {Xn(k), n=0...N-1}. These samples are then transmitted in sequence through 
the channel across the antennas array. Since the channel is FIR of length L, the output of the model at time k depends only on 
the transmitted symbols at times k-L+1...k. The symbol transmitted on the kth symbol is given as: 
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(2) 
If Hn be the frequency domain channel, defined as N  times the DFT of the time domain channel hl, we obtain 
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At the receiver, the time-domain signal is processed using the N-points DFT. On subcarrier m we have 
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where ƞm is the noise vector on sub-carrier m at time k. 
 
Maximum Likelihood Channel Estimation In MIMO-OFDM FIR Channel  
As the order of the MIMO system increases to achieve an acceptable estimation accuracy more pilots have to be collected at 
the receiver. This in turn is achieved either enlarging the observation time, or allocating more pilots on the OFDM grid. 
However, the first approach (larger observation time) compromises the ability of the receiver to track fast-varying channels, 
which is not acceptable in a Mobile Communication System. On the other hand, the second approach (more pilots on the 
OFDM grid) compromises the bandwidth efficiency of the system, since the pilots represent a waste of bandwidth. Therefore, 
it becomes important to exploit other information at the receiver than relying solely on pilots. Semi-blind channel estimators 
mitigates the above two problems by   exploiting the known symbols for the estimate but also blind information in order to 
enhance the estimation accuracy. 
Let’s assume K OFDM symbols are transmitted. The input-output relation of this system is given by 

                                     0... 1Y H X n Nn n n n                                                                              (5) 
where Yn is the R×K observation matrix, Hn is the channel matrix, Xn is the T × K matrix of the transmitted symbols, and ƞn is 
the noise matrix at the receiver on subcarrier n. We don’take any assumption on the distribution of the transmitted symbols, 
Xn may carry either pilots, unknown symbols, or both. 
The Maximum Likelihood solution is obtained by maximizing the likelihood, or equivalently minimizing the negative log-
likelihood of the observations with respect to the parameters of the model.  As the channel is FIR of length L, in order to 
enforce the functional constraint of the frequency domain channel taps, the ML solution is determined with respect to the 
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channel coefficients in the time domain, that is   , , , ,h r t l r tl  .Then, stacking the time domain channel entries on the 

column vector h, with entries    ,h RTl Tr t h r tl   , the likelihood of the observations conditioned on h is given by: 

                                                                                   ,p Y h E p Y X hX                                                                            (6) 

where the notation    ,E f      , represents the expectation of   ,f   with respect to the prior distribution of α, 

whereas the notation   ,E f      represents the expectation of  f(α,β) with respect to the distribution of α  conditioned 
on β (this expectation is a function of β ).Under regularity conditions (differentiability of the likelihood function with respect 
to its argument h), a necessary condition for the ML solution is that it is solution to the likelihood equation, which is obtained 
by calculating the gradient of   ln p Y h  with respect to the parameter vector h (the gradient operator is indicated with the 
notation Δh), and equaling it to zero. We obtain 
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Then, since the prior distribution of the transmitted symbols does not depend on the channel entries, we can move the 
gradient within the expectation term, obtaining 
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, and equaling the gradient to zero, the likelihood can 

be given as  
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Now, let’s assume that the noise at the receiver is a zero mean Gaussian process, independent across the sub-carriers and 

across time, with covariance matrix Cov(ƞn) (or equivalently precision matrix     1
B Cov nn 


  on sub-carrier n. Under this 

assumption, when conditioned on the transmitted symbols and on the channel, the observations are independent across sub-
carriers and across time, therefore we can split the probability density function (PDF) p(Y|X,H) into the product of the PDFs 
of the observations on each sub-carrier, and equivalently we can express lnp(Y|H,X) as the sum of those densities. Then, 
making explicit the probability density function on each sub-carrier we obtain 
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Where, Kn is the number of observations used for the estimate on sub-carrier n, and Hn is the frequency domain channel tap 
on sub-carrier n, whose entries are linear functions of the parameter vector h through the DFT transform. The derivative of 
this term with respect to the time-domain channel matrix entry hl(r,t) is given by 
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Finally, equaling the derivative to zero, we obtain the entries of the likelihood equation (9).  
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Since the above equation has to be satisfied for all the transmitting-receiving antennas pairs (r,t) and for all channel taps l, we 
can rewrite it in matrix form with respect to the indexes t and r, obtaining the following set of equations 
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The solutions to equation (13) are stationary points of the negative log-likelihood function, however they are not guaranteed 
to be absolute minima of the function. Furthermore, observe that the solution depends on the posterior expectation and the 
posterior correlation of the transmitted symbols after observing Y. In the case of training sequence estimation, Xn is the matrix 
containing solely the pilot symbols, which is a deterministic quantity independent of the channel realization and of the 
observations, therefore for this case the above equation reduces to: 
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When both pilot symbols and blind information are used for the estimation, we can split equation (13) into the sum of the 
contribution coming from the pilot symbols and the contribution from the blind information, that is, using the superscripts (tr) 
and (bl) to distinguish pilot from blind observations, symbols and noise, we can rewrite equation (13) as: 
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Since this equation involves the calculation of the posterior expectation of the transmitted symbols and their correlation 
conditioned on the observations Y, the solution to this equation then depends on the assumptions we use on the prior 
distribution of the unknown symbols. From the point of view of the estimation accuracy, the optimal solution consists in 
using the true discrete distribution of the symbols. However this solution is computationally very demanding, since it requires 
the computation of the posterior probabilities for any possible combination of transmitted symbols. Moreover, it is not 
scalable to MIMO systems since the number of symbol combinations grows exponentially with the transmission rank. 
 
Time Discrete Distribution of Unknown Symbols in ML Estimation 
With reference to the system model and the set of assumptions the unknown symbols are drawn uniformly from a finite 

discrete constellation 1S
� , where S is the transmission rank, independently across the sub-carriers and across time. 

Therefore, for all the unknown symbols 
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Now, based on a set of observations, collected on the observation matrix Y, and a set of pilot symbols X(tr), the goal is to 
determine the ML estimate of the channel, which is solution to the likelihood equation, given by 
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where the gradient is calculated with respect to the time-domain channel matrix h, in order to enforce the channel length 
constraint. 
 
EM-algorithm for the determination update of the channel estimate solution depends only on the posterior first and second 
order statistics of the unknown symbols. To compute the posterior first and second order statistics when current channel 
estimate h(j) is given as: 
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The unknown symbol on sub-carrier n at time k, using Bayes’ rule we have 
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Where, ρ is the normalization factor, independent of the value of the unknown symbol. 

From the posterior distribution on the unknown symbols    j
qnk  , we can calculate the two matrices  jVn  and 

 ,n j
  defined as: 



Performance of Semi-Blind Channel Estimation Approximations in LTE Downlink  253 
 

                                                                

       

     

.
1

,
1

j j
V k qn nkS
n j jH qk nkS

 


 


 


   










�

�

                                             (20) 

It is observed that, the complexity of this algorithm depends on the computations required to calculate the  posterior 
distribution for each point of the constellation 1S� . Eg. if M be the constellation order, MS posterior probabilities have to be 
calculated for each unknown symbols. Hence, this is not scalable to higher order MIMO systems, since the number of 
posterior probabilities which need to be computed grows exponentially with the transmission rank. 
 
Gaussian Approximation for the Unknown Symbols in  ML Estimation 
Assuming that the distribution of the unknown symbols is circular Gaussian, implies that the distribution of the observations 
conditioned on the channel matrix is a multivariate Gaussian, therefore the marginalization over the discrete distribution of 
the unknown symbols leads to a mixture of Gaussians. However, we can approximate this distribution with a single 
multivariate Gaussian. 
 
If the best multivariate Gaussian is given as q(X) which can be used as an approximation of the true distribution p(X). Then, 
measure of closeness of a distribution to another is given by Kullback–Leibler divergence, which for continuous distributions 
is defined as:  
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Where, p(X) is the true PDF and q(X) is the PDF we want to use to approximate p(X). To approximate p(X) with a 
multivariate Gaussian q(X) with mean m and covariance matrix Σ. Then, the best m and Σ are obtained by minimizing the 
Kullback–Leibler divergence with respect to m and Σ. It can be easily shown, by calculating the derivative and equaling it to 
zero, that the solution is given by                      
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Where, the expectation is taken with respect to the true distribution p(X). To approximate the distribution of the observations 
corresponding to the unknown symbols with a multivariate Gaussian q(Y) with mean mY and covariance matrix ΣY . On sub-
carrier n at time k the mean value of the observations is given by 
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Where, we used the fact that the noise and the unknown symbols are zero mean. 
Similarly, for the covariance matrix we obtain 
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The higher is the noise variance at the receiver with respect to the power of the symbols, the larger is the lobe of each 
multivariate Gaussian, the more overlap there is between pairs of multivariate Gaussians. Therefore, we expect this 
approximation to perform well especially in the low-SNR regime and higher constellation order. Since the posterior 
expectation of the unknown symbols is a function of the channel matrix, Expectation-Maximization algorithm is used to 
determine a local maximum to the likelihood function. 
 
For the given channel estimation h(j) , the posterior distribution and second order statistics of the unknown symbols is 
calculated as: 
Using Bayes’ rule, the posterior distribution of the unknown symbol on sub-carrier n at time k is given by 
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Where, µ is the normalization factor, which does not depend on the unknown symbols. 
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) 
where λ is the normalization factor. 
 
Comparing the above expression with Eq.(24) we have the following two equalities for the posterior covariance matrix 

 kVn
  and for the posterior mean   m kVn

 of the unknown symbols at time k on sub-carrier n, given the current update 

of the channel matrix h(j): 
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Where, for the covariance term we dropped the time index k since it is independent from it. 
Then, stacking the posterior mean of the unknown symbols on a matrix using the time k as column index, and we have 

                                                                             blj j j HHm C H B Yn nV V nn n                                                                             (29) 

From the posterior mean and covariance we can calculate the posterior first and second order moments of the unknown 
symbols as 
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These matrices are then used to update the channel matrix. 
 
Constant Modulus Approximation for the Unknown Symbols 
We propose a Semi-Blind MIMO-OFDM FIR channel estimation technique based on the assumption that the unknown 
symbols are drawn from a constant modulus alphabet. By constant modulus, it is meant a modulation technique with the 
property that all the points in the constellation have the same amplitude. the Gaussian assumption means that we have two 
degrees of uncertainty on the transmitted symbols: amplitude and phase. Conversely, the points in a constant modulus 
constellation have only one degree of freedom, the phase, since the amplitude is fixed. While in the Gaussian assumption the 
phase of the symbols is uniformly distributed in the range [0,2π) and the amplitude is Rayleigh distributed. In the Constant 
Modulus, the phase of the symbols is assumed to be uniformly distributed in the range [0,2π). Therefore, given the less 
degree of freedom on the unknown symbols, we expect to achieve a more accurate estimate than the Gaussian assumption. 
In this work, we propose an alternative algorithm, based on a Taylor series expansion of the posterior probabilities of the 
unknown symbols, for the limit case of the constellation order M going to infinity. This algorithm performs well also with a 
short sequence of blind observations, as we will show in the simulation results. Assuming rank-one transmission (S = 1), and 
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assuming that the unknown symbols Vn(k) are drawn from a constant modulus alphabet, the term    HV k V kn n is 

deterministically equal to the symbol power 2
s , independently of the observations and of the channel realization. Therefore: 

                                                                               2,
bl bl H bl bl

E V V Y h Kn n n n sbl
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                                                          (31) 

Assuming for now S > 1, and letting 1SVnk
 �  be the unknown symbol transmitted on sub-carrier n at time k, and Ynk the 

corresponding observation, the posterior mean of the unknown symbol is given by 
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Now, using Bayes’ rule, we can write the posterior distribution as 

                                                                           , ,p Y h p Y h pnknk                                                                            (33) 

Where, µ is the normalization factor, independent from µ, and the prior distribution p(α) is a constant with respect to α, since 

the symbols are drawn uniformly from the alphabet, therefore   1
p k S

�
 

Then, under the assumption that the noise is Gaussian with zero mean and precision matrix    1
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For the exponential term in the above expression we have 
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Where, µ is a constant which does not depend on α. 
 

Let  
1 2 1 2

H HC H B H Cn nS S n s s  and   HY B H Cs nnk n s
  , then we can rewrite the above exponential term as 
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In the case S>1 there is one more term in the expression for the posterior expectation, given by 

 exp
1 2 2 11 2 1
s s s ss s s

  


 
 
 

, which keeps into account the correlation between the symbols across the transmission 

streams. We defined the scalar function: 
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Since it is not possible to solve analytically the above sum, we seek for an approximation. Let  Ng x  be the function 
obtained by taking the first N terms of the numerator and denominator 
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for different values of N. 
                                                                                   lim g x g xNN
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It is observed that, the series of functions    lim g x g xNN



  approaches the black curve  gN for growing values of N, 

which is equal to zero for x = 0 and converges to one for growing values of x. Therefore we expect  gN to be close to the 

approximation g(x). 
 
With the statistical properties of the term s nk  in the low and high-SNR ranges and white Gaussian noise at the receiver 

with variance 2
w and considering the term s nk  as a random variable, its mean and variance are given by: 
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Fig 1.  g xN for different values of N 

In the low-SNR regime we have 
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� ,  therefore for the variance of  s nk   we have: 

                                                                     
222 12

H HsE C H H Cs n nnk
w


 


 
  

� �                                                                 (41) 

which means that s nk   is statistically small, and accordingly  s nkg   , that is the amplitude of the posterior 

expectation, is small since in the low-SNR regime the observations carry mostly noise, and very few information about the 
transmitted symbols, therefore the posterior mean is close to the prior mean, which is zero. 

In the high-SNR regime we have 
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� , therefore for the variance of  s nk  we have: 
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which means that s nk   is statistically large, and accordingly   s nkg   is close to 1. Similarly, this high-SNR regime 

behavior is the one expected, since the observations carry mostly information about the transmitted symbols, therefore the 
posterior mean is close to the true transmitted symbol, or equivalently it is close to the circle of amplitude σs. 

Therefore, we can statistically associate large values of s nk  to the high-SNR regime, and small values to the low-SNR 

regime.Since it is not practical to use the truncated series expansion, we want to approximate the curve g(x) g20(x)) with 

another simpler function. We verified that one close approximation is of the form  ˆ , 1 xg x e    , for some positive real 
α. In fact this function is also equal to zero for x = 0, is strictly lower than one for x>0 and converges to 1 for x    . The 

coefficient was determined by minimizing the Mean Square Error between the approximation and    20g x g x � .  

Using this approach, we determined the optimum coefficient to be α =1 .0639. Therefore, the approximation to the posterior 
expectation of the unknown symbols can be written as 
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In figure 2 we show curve g20(x) and the approximation  ˆ ,1.0639g x , as well as the error on the amplitude. 

 
 

Fig 2. Plot of function g(x) and its approximation 1-e-1.0639x 
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Fig 3. Gaussian approximation versus CM with uniform phase approximation, standard deviation on the posterior expectation; N = L = 1, 

R = T =1. 
 

Conclusion 
It is interesting to compare the closeness of the posterior expectation using the Gaussian approximation (MMSE detector) and 
using the Constant Modulus approximation for the transmitted symbols to the true posterior expectation calculated averaging 
over the true discrete distribution of the symbols. Figure 3 shows the standard deviation of the error between the true 
posterior expectation and the approximated posterior expectation for different SNR and different number of bits per symbol, 
for the two cases where the symbols are assumed to be Gaussian distributed and where they are assumed to be Constant 
Modulus with phase uniformly distributed in [0,2π). In this latter case the posterior expectation is calculated using the 
approximation to the posterior mean given by 3.69. It is worth noticing that the Constant Modulus approximation proposed 
leads to a significant improvement compared to the Gaussian assumptions, even for a small number of bits (the 2 bits case is 
particularly interesting, since this corresponds to the 4-QAM constellation used in the LTE system). Moreover, the standard 
deviation decreases over the number of bits, since the more bits there are, the more evenly the symbols are distributed on the 
unit circle, and the better their phase can be approximated as being uniform in [0,2π). 
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